The passage of homopolymeric RNA through small solid-state nanopores.
نویسندگان
چکیده
Solid-state nanopores are widely acknowledged as tools with which to study local structure in biological molecules. Individual molecules are forced through a nanopore, causing a characteristic change in an ionic current that depends on the molecules' local diameter and charge distribution. Here, the translocation measurements of long (~5-30 kilobases) single-stranded poly(U) and poly(A) molecules through nanopores ranging from 1.5 to 8 nm in diameter are presented. Individual molecules are found to be able to cause multiple levels of conductance blockade upon traversing the pore. By analyzing these conductance blockades and their relative incidence as a function of nanopore diameter, it is concluded that the smallest conductance blockades likely correspond to molecules that translocate through the pore in predominantly head-to-tail fashion. The larger conductance blockades are likely caused by molecules that arrive at the nanopore entrance with many strands simultaneously. These measurements constitute the first demonstration that single-stranded RNA can be captured in solid-state nanopores that are smaller than the diameter of double-stranded RNA. These results further the understanding of the conductance blockades caused by nucleic acids in solid-state nanopores, relevant for future applications, such as the direct determination of RNA secondary structure.
منابع مشابه
Distinguishing single- and double-stranded nucleic acid molecules using solid-state nanopores.
Solid-state nanopores offer a promising method for rapidly probing the structural properties of biopolymers such as DNA and RNA. We have for the first time translocated RNA molecules through solid-state nanopores, comparing the signatures of translocating double-stranded RNA molecules and of single-stranded homopolymers poly(A), poly(U), poly(C). On the basis of their differential blockade curr...
متن کاملRapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection.
We report the formation of solid-state nanopores using a scanning helium ion microscope. The fabrication process offers the advantage of high sample throughput along with fine control over nanopore dimensions, producing single pores with diameters below 4 nm. Electronic noise associated with ion transport through the resultant pores is found to be comparable with levels measured on devices made...
متن کاملControlling nanopore size, shape and stability.
Solid-state nanopores are considered a promising tool for the study of biological polymers such as DNA and RNA, due largely to their flexibility in size, potential in device integration and robustness. Here, we show that the precise shape of small nanopores (approximately 5 nm diameter in 20 nm SiN membranes) can be controlled by using transmission electron microscope (TEM) beams of different s...
متن کاملIntegration of solid-state nanopores in microfluidic networks via transfer printing of suspended membranes.
Solid-state nanopores have emerged as versatile single-molecule sensors for applications including DNA sequencing, protein unfolding, micro-RNA detection, label-free detection of single nucleotide polymorphisms, and mapping of DNA-binding proteins involved in homologous recombination. While machining nanopores in dielectric membranes provides nanometer-scale precision, the rigid silicon support...
متن کاملDifferentiation of short, single-stranded DNA homopolymers in solid-state nanopores.
In the last two decades, new techniques that monitor ionic current modulations as single molecules pass through a nanoscale pore have enabled numerous single-molecule studies. While biological nanopores have recently shown the ability to resolve single nucleotides within individual DNA molecules, similar developments with solid-state nanopores have lagged, due to challenges both in fabricating ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Small
دوره 7 15 شماره
صفحات -
تاریخ انتشار 2011